Optimal Risk-Based Group Testing

Author:

Aprahamian Hrayer1ORCID,Bish Douglas R.2,Bish Ebru K.3

Affiliation:

1. Industrial and Systems Engineering, Texas A&M University, College Station, Texas 77843;

2. Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061;

3. Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061

Abstract

Group testing (i.e., testing multiple subjects simultaneously with a single test) is essential for classifying a large population of subjects as positive or negative for a binary characteristic (e.g., presence of a disease). We study optimal group testing designs under subject-specific risk characteristics and imperfect tests, considering classification accuracy-, efficiency- and equity-based objectives, and characterize important structural properties of optimal testing designs. These properties allow us to model the testing design problems as partitioning problems, develop efficient algorithms, and derive insights on equity versus accuracy trade-off. One of our models reduces to a constrained shortest path problem, for a special case of which we develop a polynomial-time algorithm. We also show that determining an optimal risk-based Dorfman testing scheme that minimizes the expected number of tests is tractable, resolving an open conjecture. We demonstrate the value of optimal risk-based testing schemes with a case study of public health screening. This paper was accepted by Yinyu Ye, optimization.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Reference55 articles.

1. Residual risk and waste in donated blood with pooled nucleic acid testing

2. Aprahamian H, Bish EK, Bish DR (2017) An analytical approach to the Dorfman grouping scheme. Working paper, Virginia Tech, Blacksburg.

3. On the measurement of inequality

4. An algorithm for the resource constrained shortest path problem

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3