A Scalable Algorithm for Sparse Portfolio Selection

Author:

Bertsimas Dimitris1ORCID,Cory-Wright Ryan2ORCID

Affiliation:

1. Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142;

2. Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142

Abstract

The sparse portfolio selection problem is one of the most famous and frequently studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound on the number of positions, linear inequalities, and minimum investment constraints. Existing certifiably optimal approaches to this problem have not been shown to converge within a practical amount of time at real-world problem sizes with more than 400 securities. In this paper, we propose a more scalable approach. By imposing a ridge regularization term, we reformulate the problem as a convex binary optimization problem, which is solvable via an efficient outer-approximation procedure. We propose various techniques for improving the performance of the procedure, including a heuristic that supplies high-quality warm-starts, and a second heuristic for generating additional cuts that strengthens the root relaxation. We also study the problem’s continuous relaxation, establish that it is second-order cone representable, and supply a sufficient condition for its tightness. In numerical experiments, we establish that a conjunction of the imposition of ridge regularization and the use of the outer-approximation procedure gives rise to dramatic speedups for sparse portfolio selection problems. Summary of Contribution: This paper proposes a new decomposition scheme for tackling the problem of sparse portfolio selection: the problem of selecting a limited number of securities in a portfolio. This is a challenging problem to solve in high dimensions, as it belongs to the class of mixed-integer, nonseparable nonlinear optimization problems. We propose a new Benders-type cutting plane method and demonstrate its efficacy on a wide set of both synthetic and real-world problems, including problems with thousands of securities. Our approach also provides insights for other mixed-integer optimization problems with logical constraints.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3