An Interior-Point Differentiable Path-Following Method to Compute Stationary Equilibria in Stochastic Games

Author:

Dang Chuangyin1ORCID,Herings P. Jean-Jacques2ORCID,Li Peixuan1ORCID

Affiliation:

1. Department of Systems Engineering and Engineering Management, City University of Hong Kong, Kowloon, Hong Kong;

2. Department of Economics, Maastricht University, 6200 MD Maastricht, Netherlands

Abstract

The subgame perfect equilibrium in stationary strategies (SSPE) is the most important solution concept in applications of stochastic games, making it imperative to develop efficient methods to compute an SSPE. For this purpose, this paper develops an interior-point differentiable path-following method (IPM), which establishes a connection between an artificial logarithmic barrier game and the stochastic game of interest by adding a homotopy variable. IPM brings several advantages over the existing methods for stochastic games. On the one hand, IPM provides a bridge between differentiable path-following methods and interior-point methods and remedies several issues of an existing homotopy method called the stochastic linear tracing procedure (SLTP). First, the starting stationary strategy profile can be arbitrarily chosen. Second, IPM does not need switching between different systems of equations. Third, the use of a perturbation term makes IPM applicable to all stochastic games rather than generic games only. Moreover, a well-chosen transformation of variables reduces the number of equations and variables by roughly one half. Numerical results show that the proposed method is more than three times as efficient as SLTP. On the other hand, the stochastic game can be reformulated as a mixed complementarity problem and solved by the PATH solver. We employ the proposed IPM and the PATH solver to compute SSPEs. Numerical results evince that for some stochastic games the PATH solver may fail to find an SSPE, whereas IPM is successful in doing so for all stochastic games, which confirms the reliability and stability of the proposed method. Summary of Contribution: This paper incorporates the interior-point methods into a differentiable path-following method for computing stationary equilibria for stochastic games. This novel method brings excellent computational advantages and remedies several issues with the existing methods for stochastic games. We prove the global convergence of the proposed method and employ this method to solve numerous randomly generated stochastic games with different scales. Numerical results further confirm the high efficiency, stability, and universality of this method for stochastic games.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3