Arcflow Formulations and Constraint Generation Frameworks for the Two Bar Charts Packing Problem

Author:

Barkel Mathijs1ORCID,Delorme Maxence1ORCID

Affiliation:

1. Department of Econometrics and Operations Research, Tilburg University, 5037 AB Tilburg, Netherlands

Abstract

We consider the two bar charts packing problem (2-BCPP), a recent combinatorial optimization problem whose aim is to pack a set of one-dimensional items into the minimum number of bins. As opposed to the well-known bin packing problem, pairs of items are grouped to form bar charts, and a solution is only feasible if the first and second items of every bar chart are packed in consecutive bins. After providing a complete picture of the connections between the 2-BCPP and other relevant packing problems, we show how we can use these connections to derive valid lower and upper bounds for the problem. We then introduce two new integer linear programming (ILP) models to solve the 2-BCPP based on a nontrivial extension of the arcflow formulation. Even though both models involve an exponential number of constraints, we show that they can be solved within a constraint generation framework. We then empirically evaluate the performance of our bounds and exact approaches against an ILP model from the literature and demonstrate the effectiveness of our techniques on both benchmarks inspired by the literature and new classes of instances that are specifically designed to be hard to solve. The outcomes of our experiments are important for the packing community because they indicate that arcflow formulations can be used to solve targeted packing problems with precedence constraints and also that some of these formulations can be solved with constraint generation. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijoc.2022.1256 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3