Combinatorial Benders Decomposition for the Two-Dimensional Bin Packing Problem

Author:

Côté Jean-François1ORCID,Haouari Mohamed2ORCID,Iori Manuel3ORCID

Affiliation:

1. Centre Interuniversitaire de Recherche sur les Réseaux d'Entreprise, la Logistique et le Transport, Université Laval, Quebec, Quebec G1V 0A6, Canada;

2. Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar;

3. Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy

Abstract

The two-dimensional bin packing problem calls for packing a set of rectangular items into a minimal set of larger rectangular bins. Items must be packed with their edges parallel to the borders of the bins, cannot be rotated, and cannot overlap among them. The problem is of interest because it models many real-world applications, including production, warehouse management, and transportation. It is, unfortunately, very difficult, and instances with just 40 items are unsolved to proven optimality, despite many attempts, since the 1990s. In this paper, we solve the problem with a combinatorial Benders decomposition that is based on a simple model in which the two-dimensional items and bins are just represented by their areas, and infeasible packings are imposed by means of exponentially many no-good cuts. The basic decomposition scheme is quite naive, but we enrich it with a number of preprocessing techniques, valid inequalities, lower bounding methods, and enhanced algorithms to produce the strongest possible cuts. The resulting algorithm behaved very well on the benchmark sets of instances, improving on average on previous algorithms from the literature and solving for the first time a number of open instances. Summary of Contribution: We address the two-dimensional bin packing problem (2D-BPP), which calls for packing a set of rectangular items into a minimal set of larger rectangular bins. The 2D-BPP is a very difficult generalization of the standard one-dimensional bin packing problem, and it has been widely studied in the past because it models many real-world applications, including production, warehouse management, and transportation. We solve the 2D-BPP with a combinatorial Benders decomposition that is based on a model in which the two-dimensional items and bins are represented by their areas, and infeasible packings are imposed by means of exponentially many no-good cuts. The basic decomposition scheme is quite naive, but it is enriched with a number of preprocessing techniques, valid inequalities, lower bounding methods, and enhanced algorithms to produce the strongest possible cuts. The algorithm we developed has been extensively tested on the most well-known benchmark set from the literature, which contains 500 instances. It behaved very well, improving on average upon previous algorithms, and solving for the first time a number of open instances. We analyzed in detail several configurations before obtaining the best one and discussed several insights from this analysis in the manuscript.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3