Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size

Author:

Hertrich Christoph1ORCID,Skutella Martin2ORCID

Affiliation:

1. Department of Mathematics, London School of Economics and Political Science, London, WC2A 2AE, United Kingdom;

2. Institute of Mathematics, Technische Universität Berlin, 10587 Berlin, Germany

Abstract

The development of a satisfying and rigorous mathematical understanding of the performance of neural networks is a major challenge in artificial intelligence. Against this background, we study the expressive power of neural networks through the example of the classical NP-hard knapsack problem. Our main contribution is a class of recurrent neural networks (RNNs) with rectified linear units that are iteratively applied to each item of a knapsack instance and thereby compute optimal or provably good solution values. We show that an RNN of depth four and width depending quadratically on the profit of an optimum knapsack solution is sufficient to find optimum knapsack solutions. We also prove the following tradeoff between the size of an RNN and the quality of the computed knapsack solution: for knapsack instances consisting of n items, an RNN of depth five and width w computes a solution of value at least [Formula: see text] times the optimum solution value. Our results build on a classical dynamic programming formulation of the knapsack problem and a careful rounding of profit values that are also at the core of the well-known fully polynomial-time approximation scheme for the knapsack problem. A carefully conducted computational study qualitatively supports our theoretical size bounds. Finally, we point out that our results can be generalized to many other combinatorial optimization problems that admit dynamic programming solution methods, such as various shortest path problems, the longest common subsequence problem, and the traveling salesperson problem. History: Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. An extended abstract of this article, including Figures 1 – 7 , appeared in the Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 7685–7693 ( Hertrich and Skutella 2021 ); see https://ojs.aaai.org/index.php/AAAI/article/view/16939 ; copyright © 2021, Association for the Advancement of Artificial Intelligence. Funding: This work was supported by the Deutsche Forschungsgemeinschaft [Grants DFG-GRK 2434 and EXC-2046/1, Project 390685689] and the H2020 European Research Council [ScaleOpt-757481].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3