A Graph-Based Approach for Relating Integer Programs

Author:

Steever Zachary1ORCID,Hunt Kyle2ORCID,Karwan Mark3ORCID,Yuan Junsong4ORCID,Murray Chase C.3ORCID

Affiliation:

1. Philadelphia Eagles, Philadelphia, Pennsylvania 19148;

2. Department of Management Science and Systems, University at Buffalo, Buffalo, New York 14260;

3. Department of Industrial & Systems Engineering, University at Buffalo, Buffalo, New York 14260;

4. Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York 14260

Abstract

This paper presents a framework for classifying and comparing instances of integer linear programs (ILPs) based on their mathematical structure. It has long been observed that the structure of ILPs can play an important role in determining the effectiveness of certain solution techniques; those that work well for one class of ILPs are often found to be effective in solving similarly structured problems. In this work, the structure of a given ILP instance is captured via a graph-based representation, where decision variables and constraints are described by nodes, and edges denote the presence of decision variables in certain constraints. Using machine learning techniques for graph-structured data, we introduce two approaches for leveraging the graph representations for relating ILPs. In the first approach, a graph convolutional network (GCN) is used to classify ILP graphs as having come from one of a known number of problem classes. The second approach makes use of latent features learned by the GCN to compare ILP graphs to one another directly. As part of the latter approach, we introduce a formal measure of graph-based structural similarity. A series of empirical studies indicate strong performance for both the classification and comparison procedures. Additional properties of ILP graphs, namely, losslessness and permutation invariance, are also explored via computational experiments. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0255 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0255 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3