Learning Hidden Markov Models with Structured Transition Dynamics

Author:

Ma Simin1ORCID,Dehghanian Amin1ORCID,Garcia Gian-Gabriel1ORCID,Serban Nicoleta1ORCID

Affiliation:

1. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

The hidden Markov model (HMM) provides a natural framework for modeling the dynamic evolution of latent diseases. The unknown probability matrices of HMMs can be learned through the well-known Baum–Welch algorithm, a special case of the expectation-maximization algorithm. In many disease models, the probability matrices possess nontrivial properties that may be represented through a set of linear constraints. In these cases, the traditional Baum–Welch algorithm is no longer applicable because the maximization step cannot be solved by an explicit formula. In this paper, we propose a novel approach to efficiently solve the maximization step problem under linear constraints by providing a Lagrangian dual reformulation that we solve by an accelerated gradient method. The performance of this approach critically depends on devising a fast method to compute the gradient in each iteration. For this purpose, we employ dual decomposition and derive Karush–Kuhn–Tucker conditions to reduce our problem into a set of single variable equations, solved using a simple bisection method. We apply this method to a case study on sports-related concussion and provide an extensive numerical study using simulation. We show that our approach is in orders of magnitude computationally faster and more accurate than other alternative approaches. Moreover, compared with other methods, our approach is far less sensitive with respect to increases in problem size. Overall, our contribution lies in the advancement of accurately and efficiently handling HMM parameter estimation under linear constraints, which comprises a wide range of applications in disease modeling and beyond. History: Accepted by Paul Brooks, Area Editor for Applications in Biology, Medicine, & Healthcare. Funding: This research was funded by [Grant R01DE028283] from the National Institute of Dental and Craniofacial Research, National Institutes of Health. G.-G. Garcia was also funded by the Georgia Clinical & Translational Science Alliance National Institutes of Health award [Grant UL1-TR002378]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0342 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0342 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3