Stationary Waiting Time in Parallel Queues with Synchronization

Author:

Olvera-Cravioto Mariana1ORCID,Ruiz-Lacedelli Octavio2ORCID

Affiliation:

1. Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;

2. Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027

Abstract

Motivated by database locking problems in today’s massive computing systems, we analyze a queueing network with many servers in parallel (files) to which jobs (writing access requests) arrive according to a Poisson process. Each job requests simultaneous access to a random number of files in the database and will lock them for a random period of time. Alternatively, one can think of a queueing system where jobs are split into several fragments that are then randomly routed to specific servers in the network to be served in a synchronized fashion. We assume that the system operates on a first-come, first-served basis. The synchronization and service discipline create blocking and idleness among the servers, which leads to a strict stability condition compared with other distributed queueing models. We analyze the stationary waiting time distribution of jobs under a many-server limit and provide exact tail asymptotics. These asymptotics generalize the celebrated Cramér–Lundberg approximation for the single-server queue.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Rare Event Estimation for Maxima of Branching Random Walks;2022 Winter Simulation Conference (WSC);2022-12-11

2. Stochastic recursions on directed random graphs;Stochastic Processes and their Applications;2022-11

3. Importance sampling for maxima on trees;Stochastic Processes and their Applications;2022-06

4. A multiplicative version of the Lindley recursion;Queueing Systems;2021-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3