A multiplicative version of the Lindley recursion

Author:

Boxma Onno,Löpker Andreas,Mandjes Michel,Palmowski ZbigniewORCID

Abstract

AbstractThis paper presents an analysis of the stochastic recursion $$W_{i+1} = [V_iW_i+Y_i]^+$$ W i + 1 = [ V i W i + Y i ] + that can be interpreted as an autoregressive process of order 1, reflected at 0. We start our exposition by a discussion of the model’s stability condition. Writing $$Y_i=B_i-A_i$$ Y i = B i - A i , for independent sequences of nonnegative i.i.d. random variables $$\{A_i\}_{i\in {\mathbb N}_0}$$ { A i } i N 0 and $$\{B_i\}_{i\in {\mathbb N}_0}$$ { B i } i N 0 , and assuming $$\{V_i\}_{i\in {\mathbb N}_0}$$ { V i } i N 0 is an i.i.d. sequence as well (independent of $$\{A_i\}_{i\in {\mathbb N}_0}$$ { A i } i N 0 and $$\{B_i\}_{i\in {\mathbb N}_0}$$ { B i } i N 0 ), we then consider three special cases (i) $$V_i$$ V i equals a positive value a with certain probability $$p\in (0,1)$$ p ( 0 , 1 ) and is negative otherwise, and both $$A_i$$ A i and $$B_i$$ B i have a rational LST, (ii) $$V_i$$ V i attains negative values only and $$B_i$$ B i has a rational LST, (iii) $$V_i$$ V i is uniformly distributed on [0, 1], and $$A_i$$ A i is exponentially distributed. In all three cases, we derive transient and stationary results, where the transient results are in terms of the transform at a geometrically distributed epoch.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Management Science and Operations Research,Computer Science Applications

Reference24 articles.

1. Asmussen, S.: Applied Probability and Queues. Springer, Berlin (2008)

2. Biggins, J.: Lindley-type equations in the branching random walk. Stoch. Process. Appl. 75, 105–133 (1998)

3. Borovkov, A.A.: Ergodicity and Stability of Stochastic Processes. Wiley, New York (1998)

4. Borovkov, A.A., Foss, S.G.: Stochastically recursive sequences and their generalizations. Sib. Adv. Math. 2(1), 16–81 (1992)

5. Boxma, O., Mandjes, M.: Affine storage and insurance risk models. Math. Oper. Res. (2021) (to appear)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3