Affiliation:
1. Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven; Netherlands;
2. Korteweg-de Vries Institute for Mathematics, University of Amsterdam, 1098 XH Amsterdam, Netherlands
Abstract
The aim of this paper is to analyze a general class of storage processes, in which the rate at which the storage level increases or decreases is assumed to be an affine function of the current storage level, and, in addition, both upward and downward jumps are allowed. To do so, we first focus on a related insurance risk model, for which we determine the ruin probability at an exponentially distributed epoch jointly with the corresponding undershoot and overshoot, given that the capital level at time 0 is exponentially distributed as well. The obtained results for this insurance risk model can be translated in terms of two types of storage models, in one of those two cases by exploiting a duality relation. Many well-studied models are shown to be special cases of our insurance risk and storage models. We conclude by showing how the exponentiality assumptions can be greatly relaxed.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Computer Science Applications,General Mathematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献