Vehicle Routing Problems with Synchronized Visits and Stochastic Travel and Service Times: Applications in Healthcare

Author:

Hashemi Doulabi Hossein12,Pesant Gilles23,Rousseau Louis-Martin24

Affiliation:

1. Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada;

2. Interuniversity Research Center on Enterprise Networks, Logistics and Transportation, Montreal, Quebec H3C 3J7, Canada;

3. Department of Computer and Software Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada;

4. Department of Mathematics and Industrial Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada

Abstract

This paper, for the first time, studies vehicle routing problems with synchronized visits (VRPS) and stochastic travel and service times. In addition to considering a home healthcare scheduling problem, we introduce an operating room scheduling problem with stochastic durations as a novel application of VRPS. We formulate VRPS with stochastic times as a two-stage stochastic integer programming model that, unlike the deterministic models in the VRPS literature, does not have any big-M constraints. This advantage comes at the cost of a large number of second-stage integer variables. We prove that the integrality constraints on second-stage variables can be relaxed, and therefore, we can apply the L-shaped algorithm and its branch-and-cut implementation to solve the problem. We enhance the model by developing valid inequalities and a lower bounding functional. We analyze the subproblems of the L-shaped algorithm and devise a specialized algorithm for them that is significantly faster than standard linear programming algorithms. Computational results show that the branch-and-cut algorithm optimally solves stochastic home healthcare scheduling instances with 15 patients and 10%–30% of synchronized visits. It also finds solutions with an average optimality gap of 3.57% for instances with 20 patients. Furthermore, the branch-and-cut algorithm optimally solves stochastic operating room scheduling problems with 20 surgeries.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3