Multi-Objective Technology-Based Approach to Home Healthcare Routing Problem Considering Sustainability Aspects

Author:

Zaid Ahmed Adnan1ORCID,Asaad Ahmed R.2ORCID,Othman Mohammed34ORCID,Haj Mohammad Ahmad5

Affiliation:

1. Department of Logistic Management, Faculty of Business and Economics, Palestine Technical University-Kadoorie, Tulkarm, Palestine

2. Palestinian Broadcasting Corporation (PBC), Ramallah, Palestine

3. Department of Industrial and Mechanical Engineering, Faculty of Engineering and Information Technology, An-Najah National University, Nablus, Palestine

4. Department of Mechanical and Industrial Engineering, College of Engineering, Sultan Qaboos University, Muscat 123, Oman

5. Independent Researcher, Ajman, United Arab Emirates

Abstract

Background: This research aims to solve a home healthcare vehicle routing problem (HHCVRP) model that considers the social aspect of sustainability and will be implemented in smart cities. In addition to the dynamism and uncertainty caused by variations in the patient’s condition, the proposed model considers parameters and variables that enhance its practicability, such as assuming different levels of patient importance (priority). Methods: The model was solved using a metaheuristic algorithm approach via the Ant Colony Optimization algorithm and the Non-Dominated Sorting technique due to the ability of such a combination to work out with dynamic models with uncertainties and multi-objectives. Results: This study proposes a novel mathematical model by integrating body sensors on patients to keep updating their conditions and prioritizing critical conditions in service. The sensitivity analysis demonstrates that using a heart rate sensor improves service quality and patient satisfaction without affecting the energy consumed. In addition, quality costs are increased if the importance levels of patients increase. Conclusions: The suggested model can assist healthcare practitioners in tracking patients’ health conditions to improve the quality of service and manage workload effectively. A trade-off between patient satisfaction and service provider satisfaction should be maintained.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3