The Robust Traveling Salesman Problem with Time Windows Under Knapsack-Constrained Travel Time Uncertainty

Author:

Bartolini Enrico1ORCID,Goeke Dominik2,Schneider Michael1,Ye Mengdie1

Affiliation:

1. Deutsche Post Chair – Optimization of Distribution Networks, School of Business and Economics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52062 Aachen, Germany;

2. Lufthansa Systems GmbH & Co.KG, 65479 Raunheim, Germany

Abstract

We study the traveling salesman problem with time windows (TSPTW) under travel time uncertainty—modeled by means of an uncertainty set including all travel time vectors of interest. We consider a knapsack-constrained uncertainty set stipulating a nominal and a peak travel time for each arc and an upper bound [Formula: see text] on the sum of all deviations from the nominal times. Viewing the difference between the peak time and its nominal value as the maximum delay possibly incurred when traversing the corresponding arc, the problem we consider is thus to find a tour that remains feasible for up to [Formula: see text] units of delay. This differs from previous studies on robust routing under travel time uncertainty, which have relied on cardinality-constrained sets and only allow for an upper bound on the number of arcs with peak travel time. We propose an exact algorithm based on column generation and dynamic programming that involves effective dominance rules and an extension of the [Formula: see text]-tour relaxation proposed in the literature for the classical TSPTW. The algorithm is able to solve the robust TSPTW under both knapsack- and cardinality-constrained travel time uncertainty. Extensive computational experiments show that the algorithm is successful on instances with up to 80 customers. In addition, we study the impact of the two uncertainty sets on the trade-off between service quality and cost exhibited by the resulting solutions.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3