Generalized Riskiness Index in Vehicle Routing Under Uncertain Travel Times: Formulations, Properties, and Exact Solution Framework

Author:

Zhang Zhenzhen1ORCID,Zhang Yu2ORCID,Baldacci Roberto3ORCID

Affiliation:

1. School of Economics and Management, Tongji University, Shanghai 200092, China;

2. Department of Supply Chain Management, School of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China;

3. Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar

Abstract

We consider a vehicle routing problem with time windows under uncertain travel times where the goal is to determine routes for a fleet of homogeneous vehicles to arrive at the locations of customers within their stipulated time windows to the maximum extent while ensuring that the total travel cost does not exceed a prescribed budget. Specifically, a novel performance measure that accounts for the riskiness associated with late arrivals at the customers, called the generalized riskiness index (GRI), is optimized. The GRI covers several existing riskiness indices as special cases and generates new ones. We demonstrate its salient managerial and computational properties to motivate it better. We propose alternative set partitioning-based models of the problem. To obtain the optimal solution, we develop an exact solution framework combining route enumeration and branch-price-and-cut algorithms, in which the GRI is dealt with in route enumeration and column generation subproblems. We mainly reduce the solution space by exploiting the GRI and budget constraints’ properties without losing optimality. The proposed method is tested on a collection of instances derived from the literature. The results show that a new instance of the GRI outperforms several existing riskiness indices in mitigating lateness. The exact method can solve instances with up to 100 nodes to optimality. It can consistently solve instances involving up to 50 nodes, outperforming state-of-the-art methods by more than doubling the manageable instance size. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72101187, 72371204, 72021002, and 71901180], the Qatar National Research Fund [Grant ARG01-0430-230029], Natural Science Foundation of Sichuan Province [24NSFSC6232], and Guanghua Talent Project of the Southwestern University of Finance and Economics. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0345 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3