Passenger-Centric Integrated Airline Schedule and Aircraft Recovery

Author:

Cadarso Luis1ORCID,Vaze Vikrant2ORCID

Affiliation:

1. Aerospace Systems and Transport Research Group, European Institute for Aviation Training and Accreditation (EIATA), Rey Juan Carlos University, Madrid 28943, Spain;

2. Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755

Abstract

Airlines are known to compete for passengers, and airline profitability heavily depends on the ability to estimate passenger demand, which in turn depends on flight schedules, fares, and the number of seats available at each fare, across all airlines. Interestingly, such competitive interactions and passenger substitution effects may not be limited to the planning stages. Existing regulations in some countries and regions impose monetary compensations to passengers in case of disruptions, altering the way they perceive the utility of other travel alternatives after the disruption starts. These passenger rights regulations may act as catalysts of passengers’ response to recovered schedules. Ignoring such passenger response behavior under operational disruptions may lead airlines to develop subpar recovery schedules. We develop a passenger response model and embed it into a novel integrated optimization approach that recovers airline schedules, aircraft, and passenger itineraries while endogenizing the impacts of airlines' decisions on passenger compensation and passenger response. We also develop an original solution approach, involving exact linearization of the nonlinear passenger cost terms, combined with delayed constraint generation for ensuring aircraft maintenance feasibility and an acceleration technique that penalizes deviations from planned schedules. Computational results on real-world problem instances from two major European airlines are reported, for scenarios involving disruptions, such as delayed flights, airport closures, and unexpected grounding of aircraft. Our approach is found to be tractable and scalable, producing solutions that are superior to airline’s actual decisions and highly robust in the face of passenger response uncertainty. Of particular relevance to the practitioners, our simulation results highlight that accounting for passengers’ disruption response behaviors, even in a highly approximate manner, yields significant benefits to the airline compared with not accounting for them at all, which is the current state-of-the-art.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Reference33 articles.

1. Decreasing airline delay propagation by re-allocating scheduled slack

2. A Robust Pairing Model for Airline Crew Scheduling

3. Flight Network-Based Approach for Integrated Airline Recovery with Cruise Speed Control

4. Barnhart C, Vaze V (2015) Irregular operations: Schedule recovery and robustness. Belobaba P, Odoni A, Barnhart C, eds. The Global Airline Industry, 2nd ed. (Wiley, West Sussex, UK).

5. Flight operations recovery: New approaches considering passenger recovery

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3