A Dynamic Holding Approach to Stabilizing a Bus Line Based on the Q-Learning Algorithm with Multistage Look-Ahead

Author:

He Sheng-Xue1ORCID,He Jian-Jia1,Liang Shi-Dong1,Dong June Qiong2,Yuan Peng-Cheng1

Affiliation:

1. Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;

2. School of Business, State University of New York at Oswego, Oswego, New York, 13126

Abstract

The unreliable service and the unstable operation of a high-frequency bus line are shown as bus bunching and the uneven distribution of headways along the bus line. Although many control strategies, such as the static and dynamic holding strategies, have been proposed to solve the above problems, many of them take on some oversimplified assumptions about the real bus line operation. So it is hard for them to continuously adapt to the evolving complex system. In view of this dynamic setting, we present an adaptive holding method that combines the classic approximate dynamic programming (ADP) with the multistage look-ahead mechanism. The holding time, the only control means used in this study, will be determined by estimating its impact on the operation stability of the bus line system in the remaining observation period. The multistage look-ahead mechanism introduced into the classic Q-learning algorithm of the ADP model makes it easy that the algorithm gets through its earlier unstable phase more quickly and easily. During the implementation of the new holding approach, the past experiences of holding operations can be cumulated effectively into an artificial neural network used to approximate the unavailable Q-factor. The use of a detailed simulation system in the new approach makes it possible to take into account most of the possible causes of instability. The numerical experiments show that the new holding approach can stabilize the system by producing evenly distributed headway and removing bus bunching thoroughly. Compared with the terminal station holding strategies, the new method brings a more reliable bus line with shorter waiting times for passengers.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3