Heatmap-Based Decision Support for Repositioning in Ride-Sharing Systems

Author:

Haferkamp Jarmo1ORCID,Ulmer Marlin W.1ORCID,Ehmke Jan Fabian23ORCID

Affiliation:

1. Chair of Management Science, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany;

2. Business Decisions and Analytics, University of Vienna, 1090 Vienna, Austria;

3. Research Network Data Science, University of Vienna, 1090 Vienna, Austria

Abstract

In ride-sharing systems, platform providers aim to distribute the drivers in the city to meet current and potential future demand and to avoid service cancellations. Ensuring such distribution is particularly challenging in the case of a crowdsourced fleet, as drivers are not centrally controlled but are free to decide where to reposition when idle. Thus, providers look for alternative ways to ensure a vehicle distribution that benefits users, drivers, and the provider. We propose an intuitive mean to improve idle ride-sharing vehicles’ repositioning: repositioning heatmaps. These heatmaps highlight driver-specific earning opportunities approximated based on the expected future demand, current and expected future fleet distribution, and the location of the specific driver. Based on the heatmaps, drivers make decentralized yet better-informed repositioning decisions. As our heatmap policy changes the driver distribution in the future, we propose an adaptive learning algorithm for designing our heatmaps in large-scale ride-sharing systems. We simulate the system and generate heatmaps based on the previously learned policy in every iteration. We then update the policy based on the simulation’s outcome and use it in the next iteration. We test our heatmap design in a comprehensive case study on New York ride-sharing data. We show that carefully designed heatmaps reduce service cancellations and therefore, revenue loss for the platform and drivers significantly while leading to a better service level for the users and to a fairer treatment of drivers. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems. Funding: This research is funded by the German Research Foundation (Deutsche Forschungsgemeinschaft) [Grant 494812908]. M. W. Ulmer’s work is funded by the German Research Foundation Emmy Noether Programme [Grant 444657906]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.1202 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3