Affiliation:
1. Industrial and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
2. Otto-von-Guericke Universität Magdeburg, Magdeburg 39106, Germany
Abstract
Peer-to-peer transportation platforms dynamically match requests (e.g., a ride, a delivery) to independent suppliers who are not employed nor controlled by the platform. Thus, the platform cannot be certain that a supplier will accept an offered request. To mitigate this selection uncertainty, a platform can offer each supplier a menu of requests to choose from. Such menus need to be created carefully because there is a trade-off between selection probability and duplicate selections. In addition to a complex decision space, supplier selection decisions are vast and have systematic implications, impacting the platform’s revenue, other suppliers’ experiences (in the form of duplicate selections), and the request waiting times. Thus, we present a multiple scenario approach, repeatedly sampling potential supplier selections, solving the corresponding two-stage decision problems, and combining the multiple different solutions through a consensus algorithm. Extensive computational results using the Chicago Region as a case study illustrate that our method outperforms a set of benchmark policies. We quantify the value of anticipating supplier selection, offering menus to suppliers, offering requests to multiple suppliers at once, and holistically generating menus with the entire system in mind. Our method leads to more balanced assignments by sacrificing some “easy wins” toward better system performance over time and for all stakeholders involved, including increased revenue for the platform, and decreased match waiting times for suppliers and requests.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Transportation,Civil and Structural Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献