An Iterative Sample Scenario Approach for the Dynamic Dispatch Waves Problem

Author:

Lan Leon1ORCID,van Doorn Jasper M. H.1ORCID,Wouda Niels A.2ORCID,Rijal Arpan2ORCID,Bhulai Sandjai1ORCID

Affiliation:

1. Department of Mathematics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands;

2. Department of Operations, University of Groningen, 9747 AE Groningen, Netherlands

Abstract

A challenge in same-day delivery operations is that delivery requests are typically not known beforehand, but are instead revealed dynamically during the day. This uncertainty introduces a trade-off between dispatching vehicles to serve requests as soon as they are revealed to ensure timely delivery and delaying the dispatching decision to consolidate routing decisions with future, currently unknown requests. In this paper, we study the dynamic dispatch waves problem, a same-day delivery problem in which vehicles are dispatched at fixed decision moments. At each decision moment, the system operator must decide which of the known requests to dispatch and how to route these dispatched requests. The operator’s goal is to minimize the total routing cost while ensuring that all requests are served on time. We propose iterative conditional dispatch (ICD), an iterative solution construction procedure based on a sample scenario approach. ICD iteratively solves sample scenarios to classify requests to be dispatched, postponed, or undecided. The set of undecided requests shrinks in each iteration until a final dispatching decision is made in the last iteration. We develop two variants of ICD: one variant based on thresholds, and another variant based on similarity. A significant strength of ICD is that it is conceptually simple and easy to implement. This simplicity does not harm performance: through rigorous numerical experiments, we show that both variants efficiently navigate the large state and action spaces of the dynamic dispatch waves problem and quickly converge to a high-quality solution. Finally, we demonstrate that the threshold-based ICD variant achieves excellent results on instances from the EURO Meets NeurIPS 2022 Vehicle Routing Competition, nearly matching the performance of the winning machine learning–based strategy. History: This paper has been accepted for the Transportation Science Special Issue on DIMACS Implementation Challenge: Vehicle Routing Problems. Funding: This work was supported by TKI Dinalog, Topsector Logistics, and the Dutch Ministry of Economic Affairs and Climate Policy. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0111 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3