Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle Routing Problem with Time Windows

Author:

Baty Léo1ORCID,Jungel Kai2ORCID,Klein Patrick S.2ORCID,Parmentier Axel1ORCID,Schiffer Maximilian23ORCID

Affiliation:

1. CERMICS, École des Ponts, Champs sur Marne, 77455 Marne la Vallée Cedex 2, France;

2. School of Management, Technical University of Munich, 80333 Munich, Germany;

3. Munich Data Science Institute, Technical University of Munich, 80333 Munich, Germany

Abstract

With the rise of e-commerce and increasing customer requirements, logistics service providers face a new complexity in their daily planning, mainly due to efficiently handling same-day deliveries. Existing multistage stochastic optimization approaches that allow solving the underlying dynamic vehicle routing problem either are computationally too expensive for an application in online settings or—in the case of reinforcement learning—struggle to perform well on high-dimensional combinatorial problems. To mitigate these drawbacks, we propose a novel machine learning pipeline that incorporates a combinatorial optimization layer. We apply this general pipeline to a dynamic vehicle routing problem with dispatching waves, which was recently promoted in the EURO Meets NeurIPS Vehicle Routing Competition at NeurIPS 2022. Our methodology ranked first in this competition, outperforming all other approaches in solving the proposed dynamic vehicle routing problem. With this work, we provide a comprehensive numerical study that further highlights the efficacy and benefits of the proposed pipeline beyond the results achieved in the competition, for example, by showcasing the robustness of the encoded policy against unseen instances and scenarios. History: This paper has been accepted for the Transportation Science special issue on DIMACS Implementation Challenge: Vehicle Routing Problems. Funding: This work was supported by Deutsche Forschungsgemeinschaft [Grant 449261765].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3