Approximations and Optimal Control for State-Dependent Limited Processor Sharing Queues

Author:

Gupta Varun1ORCID,Zhang Jiheng2ORCID

Affiliation:

1. Booth School of Business, University of Chicago, Chicago, Illinois 60637;

2. Department of Industrial Engineering & Decision Analytics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong S.A.R., China

Abstract

The paper studies approximations and control of a processor sharing (PS) server where the service rate depends on the number of jobs occupying the server. The control of such a system is implemented by imposing a limit on the number of jobs that can share the server concurrently, with the rest of the jobs waiting in a first-in-first-out (FIFO) buffer. A desirable control scheme should strike the right balance between efficiency (operating at a high service rate) and parallelism (preventing small jobs from getting stuck behind large ones). We use the framework of heavy-traffic diffusion analysis to devise near optimal control heuristics for such a queueing system. However, although the literature on diffusion control of state-dependent queueing systems begins with a sequence of systems and an exogenously defined drift function, we begin with a finite discrete PS server and propose an axiomatic recipe to explicitly construct a sequence of state-dependent PS servers that then yields a drift function. We establish diffusion approximations and use them to obtain insightful and closed-form approximations for the original system under a static concurrency limit control policy. We extend our study to control policies that dynamically adjust the concurrency limit. We provide two novel numerical algorithms to solve the associated diffusion control problem. Our algorithms can be viewed as “average cost” iteration: The first algorithm uses binary-search on the average cost, while the second faster algorithm uses Newton-Raphson method for root finding. Numerical experiments demonstrate the accuracy of our approximation for choosing optimal or near-optimal static and dynamic concurrency control heuristics.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Modeling and Simulation,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3