When Shared Autonomous Electric Vehicles Meet Microgrids: Citywide Energy-Mobility Orchestration

Author:

Qi Wei1ORCID,Sha Mengyi2ORCID,Li Shanling1ORCID

Affiliation:

1. Desautels Faculty of Management, McGill University, Montreal, Quebec H3A 1G5, Canada;

2. Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada

Abstract

Problem definition: We develop a crossdisciplinary analytics framework to understand citywide mobility-energy synergy. In particular, we investigate the potential of shared autonomous electric vehicles (SAEVs) for improving the self-sufficiency and resilience of solar-powered urban microgrids. Academic/practical relevance: Our work is motivated by the ever-increasing interconnection of energy and mobility service systems at the urban scale. We propose models and analytics to characterize the dynamics of the SAEV-microgrid service systems, which were largely overlooked by the literature on service operations and vehicle-grid integration (VGI) analysis. Methodology: We develop a space-time-energy network representation of SAEVs. Then, we formulate linear program models to incorporate an array of major operational decisions interconnecting the mobility and energy systems. To preventatively ensure microgrid resilience, we also propose an “N − 1” resilience-constrained fleet dispatch problem to cope with microgrid outages. Results: Combining eight data sources of New York City, our results show that 80,000 SAEVs in place of the current ride-sharing mobility assets can improve the microgrid self-sufficiency by 1.45% (benchmarked against the case without grid support) mainly via the spatial transfer of electricity, which complements conventional VGI. Scaling up the SAEV fleet size to 500,000 increases the microgrid self-sufficiency by 8.85% mainly through temporal energy transfer, which substitutes conventional VGI. We also quantify the potential and trade-offs of SAEVs for peak electricity import reduction and ramping mitigation. In addition, microgrid resilience can be enhanced by SAEVs, but the actual resilience level varies by microgrids and by the hour when grid contingency occurs. The SAEV fleet operator can further maintain the resilience of pivotal microgrid areas at their maximum achievable level with no more than a 1% increase in the fleet repositioning trip length. Managerial implications: Our models and findings demonstrate the potential in deepening the integration of urban mobility and energy service systems toward a smart-city future.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3