Reliable Frequency Regulation Through Vehicle-to-Grid: Encoding Legislation with Robust Constraints

Author:

Lauinger Dirk1ORCID,Vuille François2,Kuhn Daniel3ORCID

Affiliation:

1. MIT Energy Initiative and Sloan School of Management, Cambridge, Massachusetts 02139;

2. Direction de l’énergie, Lausanne 1014, Switzerland;

3. Ecole polytechnique fédérale de Lausanne, Risk Analytics and Optimization Chair, Lausanne 1015, Switzerland

Abstract

Problem definition: Vehicle-to-grid increases the low utilization rate of privately owned electric vehicles by making their batteries available to electricity grids. We formulate a robust optimization problem that maximizes a vehicle owner’s expected profit from selling primary frequency regulation to the grid and guarantees that market commitments are met at all times for all frequency deviation trajectories in a functional uncertainty set that encodes applicable legislation. Faithfully modeling the energy conversion losses during battery charging and discharging renders this optimization problem nonconvex. Methodology/results: By exploiting a total unimodularity property of the uncertainty set and an exact linear decision rule reformulation, we prove that this nonconvex robust optimization problem with functional uncertainties is equivalent to a tractable linear program. Through extensive numerical experiments using real-world data, we quantify the economic value of vehicle-to-grid and elucidate the financial incentives of vehicle owners, aggregators, equipment manufacturers, and regulators. Managerial implications: We find that the prevailing penalties for nondelivery of promised regulation power are too low to incentivize vehicle owners to honor the delivery guarantees given to grid operators. Funding: This work was supported by the Institut Vedecom. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0154 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frequency regulation with storage: On losses and profits;European Journal of Operational Research;2024-12

2. Collaborative Vehicle-to-Grid Operations in Frequency Regulation Markets;Manufacturing & Service Operations Management;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3