Making the Most of Your Regret: Workers’ Relocation Decisions in On-Demand Platforms

Author:

Jiang Zhong-Zhong12ORCID,Kong Guangwen3ORCID,Zhang Yinghao4ORCID

Affiliation:

1. School of Business Administration & Institute of Behavioral and Service Operations Management, Northeastern University, Shenyang 110167, China;

2. Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China;

3. Fox School of Business, Temple University, Philadelphia, Pennsylvania 19122;

4. Carl H. Lindner College of Business, University of Cincinnati, Cincinnati, Ohio 45221

Abstract

Problem definition : We have witnessed a rapid rise of on-demand platforms, such as Uber, in the past few years. Although these platforms allow workers to choose their own working hours, they have limited leverage in maintaining availability of workers within a region. As such, platforms often implement various policies, including offering financial incentives and/or communicating customer demand to workers in order to direct more workers to regions with shortage in supply. This research examines how behavioral biases such as regret aversion may influence workers’ relocation decisions and ultimately the system performance. Academic/practical relevance : Studies on on-demand platforms often assume that workers are rational agents who make optimal decisions. Our research investigates workers’ relocation decisions from a behavioral perspective. A deeper understanding of workers’ behavioral biases and their causes will help on-demand platforms design appropriate policies to increase their own profit, worker surplus, and the overall efficiency of matching supply with demand. Methodology : We use a combination of behavioral modeling and controlled laboratory experiments. We develop analytical models that incorporate regret aversion to produce theoretical predictions, which are then tested and verified via a series of controlled laboratory experiments. Results : We find that regret aversion plays an important role in workers’ relocation decisions. Regret-averse workers are more willing to relocate to the supply-shortage zone than rational workers. This increased relocation behavior, however, is not sufficient to translate to a better system performance. Platform interventions, such as demand information sharing and dynamic wage bonus, can help further improve the system. We find that workers’ regret-aversion behavior may lead to an increased profit for the platform, a higher surplus for the workers, and an improved demand-supply matching efficiency, thus benefiting the entire on-demand system. Managerial implications : Our research emphasizes the importance and necessity of incorporating workers’ behavioral biases such as regret aversion into the policy design of on-demand platforms. Policies without considering the behavioral aspect of workers’ decision may lead to lost profit for the platform and reduced welfare for workers and customers, which may ultimately hurt the on-demand business.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3