The Internet of Things and Information Fusion: Who Talks to Who?

Author:

Saghafian Soroush1ORCID,Tomlin Brian2ORCID,Biller Stephan3

Affiliation:

1. Harvard Kennedy School, Harvard University, Cambridge, Massachusetts 02138;

2. Tuck School of Business, Dartmouth College, Hanover, New Hampshire 03755;

3. Advanced Manufacturing International, Clearwater, Florida 33762

Abstract

Problem definition: Autonomous sensors connected through the internet of things (IoT) are deployed by different firms in the same environment. The sensors measure an important operating-condition state variable, but their measurements are noisy, so estimates are imperfect. Sensors can improve their own estimates by soliciting estimates from other sensors. The choice of which sensors to communicate with (target) is challenging because sensors (1) are constrained in the number of sensors they can target and (2) only have partial knowledge of how other sensors operate—that is, they do not know others’ underlying inference algorithms/models. We study the targeting problem, examine the evolution of interfirm sensor communication patterns, and explore what drives the patterns. Academic/practical relevance: Many industries are increasingly using sensors to drive improvements in key performance metrics (e.g., asset uptime) through better information on operating conditions. Sensors will communicate among themselves to improve estimation. This IoT vision will have a major impact on operations management (OM), and OM scholars need to develop and examine models and frameworks to better understand sensor interactions. Methodology: Analytic modeling combining decision-making, estimation, optimization, and learning is used. Results: We show that when selecting its target(s), each sensor needs to consider both the measurement quality of the other sensors and its level of familiarity with their inference models. We establish that the state of the environment plays a key role in mediating quality and familiarity. When sensor qualities are public, we show that each sensor eventually settles on a constant target set, but this long-run target set is sample-path dependent (i.e., dependent on past states) and varies by sensor. The long-run network, however, can be fully defined at time zero as a random directed graph, and hence, one can probabilistically predict it. This prediction can be made perfect (i.e., the network can be identified in a deterministic way) after observing the state values for a limited number of periods. When sensor qualities are private, our results reveal that sensors may not settle on a constant target set but the subset among which it cycles can still be stochastically predicted. Managerial implications: Our work allows managers to predict (and influence) the set of other firms with which their sensors will form information links. Analogous to a manufacturer mapping its supplier base to help manage supply continuity, our work enables a firm to map its sensor-based-information suppliers to help manage information continuity.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3