Domination Measure: A New Metric for Solving Multiobjective Optimization

Author:

Hale Joshua Q.1,Zhu Helin2,Zhou Enlu3ORCID

Affiliation:

1. Intel Corporation, Chandler, Arizona 85226;

2. Uber Technologies, Inc., San Francisco, California 94103;

3. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

For general multiobjective optimization problems, the usual goal is finding the set of solutions not dominated by any other solutions, that is, a set of solutions as good as any other solution in all objectives and strictly better in at least one objective. In this paper, we propose a novel performance metric called the domination measure to measure the quality of a solution, which can be intuitively interpreted as the probability that an arbitrary solution in the solution space dominates that solution with respect to a predefined probability measure. We then reformulate the original problem as a stochastic and single-objective optimization problem. We further propose a model-based approach to solve it, which leads to an ideal version algorithm and an implementable version algorithm. We show that the ideal version algorithm converges to a set representation of the global optima of the reformulated problem; we demonstrate the numerical performance of the implementable version algorithm by comparing it with numerous existing multiobjective optimization methods on popular benchmark test functions. The numerical results show that the proposed approach is effective in generating a finite and uniformly spread approximation of the Pareto optimal set of the original multiobjective problem and is competitive with the tested existing methods. The concept of domination measure opens the door for potentially many new algorithms, and our proposed algorithm is an instance that benefits from domination measure.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3