A Discrete Convex Min-Max Formula for Box-TDI Polyhedra

Author:

Frank András1ORCID,Murota Kazuo2ORCID

Affiliation:

1. MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University, Budapest H-1117, Hungary;

2. School of Business Administration, Tokyo Metropolitan University, Tokyo 192-0397, Japan

Abstract

A min-max formula is proved for the minimum of an integer-valued separable discrete convex function in which the minimum is taken over the set of integral elements of a box total dual integral polyhedron. One variant of the theorem uses the notion of conjugate function (a fundamental concept in nonlinear optimization), but we also provide another version that avoids conjugates, and its spirit is conceptually closer to the standard form of classic min-max theorems in combinatorial optimization. The presented framework provides a unified background for separable convex minimization over the set of integral elements of the intersection of two integral base-polyhedra, submodular flows, L-convex sets, and polyhedra defined by totally unimodular matrices. As an unexpected application, we show how a wide class of inverse combinatorial optimization problems can be covered by this new framework.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent progress on integrally convex functions;Japan Journal of Industrial and Applied Mathematics;2023-04-27

2. Inverse optimization problems with multiple weight functions;Discrete Applied Mathematics;2023-03

3. Optimize One Max Problem by PSO and CSA;Proceedings of Eighth International Congress on Information and Communication Technology;2023

4. Note on the polyhedral description of the Minkowski sum of two L-convex sets;Japan Journal of Industrial and Applied Mathematics;2022-06-11

5. Discrete Fenchel duality for a pair of integrally convex and separable convex functions;Japan Journal of Industrial and Applied Mathematics;2022-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3