Discrete Fenchel duality for a pair of integrally convex and separable convex functions

Author:

Murota Kazuo,Tamura AkihisaORCID

Abstract

AbstractDiscrete Fenchel duality is one of the central issues in discrete convex analysis. The Fenchel-type min–max theorem for a pair of integer-valued M$$^{\natural }$$ -convex functions generalizes the min–max formulas for polymatroid intersection and valuated matroid intersection. In this paper we establish a Fenchel-type min–max formula for a pair of integer-valued integrally convex and separable convex functions. Integrally convex functions constitute a fundamental function class in discrete convex analysis, including both M$$^{\natural }$$ -convex functions and L$$^{\natural }$$ -convex functions, whereas separable convex functions are characterized as those functions which are both M$$^{\natural }$$ -convex and L$$^{\natural }$$ -convex. The theorem is proved by revealing a kind of box integrality of subgradients of an integer-valued integrally convex function. The proof is based on the Fourier–Motzkin elimination.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Engineering

Reference30 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Properties of Convex Lattice Sets under the Discrete Legendre Transform;Mathematics;2024-06-06

2. Decomposition of an integrally convex set into a Minkowski sum of bounded and conic integrally convex sets;Japan Journal of Industrial and Applied Mathematics;2023-12-16

3. Structured Replacement Policies for Offshore Wind Turbines;Probability in the Engineering and Informational Sciences;2023-10-02

4. INCLUSION AND INTERSECTION RELATIONS BETWEEN FUNDAMENTAL CLASSES OF DISCRETE CONVEX FUNCTIONS;Journal of the Operations Research Society of Japan;2023-07-31

5. Recent progress on integrally convex functions;Japan Journal of Industrial and Applied Mathematics;2023-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3