Asymptotic Optimality of Constant-Order Policies in Joint Pricing and Inventory Models

Author:

Chen Xin1ORCID,Stolyar Alexander L.2ORCID,Xin Linwei3ORCID

Affiliation:

1. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30313;

2. Department of Industrial and Enterprise Systems Engineering & Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;

3. Booth School of Business, University of Chicago, Chicago, Illinois 60637

Abstract

We consider a classic joint pricing and inventory control problem with lead times, which is extensively studied in the literature but is notoriously difficult to solve because of the complex structure of the optimal policy. In this work, rather than analyzing the optimal policy, we propose a class of constant-order dynamic pricing policies, which are fundamentally different from base-stock list price policies, the primary emphasis in the existing literature. Under such a policy, a constant-order amount of new inventory is ordered every period, and a pricing decision is made based on the inventory level. The policy is independent of the lead time. We prove that the best constant-order dynamic pricing policy is asymptotically optimal as the lead time grows large, which is exactly the setting in which the problem becomes computationally intractable because of the curse of dimensionality. As our main methodological contributions, we establish the convergence to a long-run average random yield inventory model with zero lead time and ordering capacities by its discounted counterpart as the discount factor goes to one, nontrivially extending the previous results in Federgruen and Yang that analyze a similar model but without capacity constraints. Funding: Research of X. Chen and L. Xin was partly supported by the National Science Foundation [Grant CMMI-1635160].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3