Long-Term Persistence of <i>Yersinia pestis</i> in Association with Acanthamoeba castellanii in Experiment

Author:

Makashova M. A.1ORCID,Oglodin E. G.1ORCID,Kukleva L. M.1ORCID,Sharapova N. A.1ORCID,Naryshkina E. A.1ORCID,Germanchuk V. G.1ORCID,Eroshenko G. A.1ORCID,Kutyrev V. V.1ORCID

Affiliation:

1. Russian Research Anti-Plague Institute “Microbe”

Abstract

The aim of the study was to test the feasibility of long-term survival and preservation of the properties of Yersinia pestis in association with soil amoeba Acanthamoeba castellanii. Materials and methods. Y. pestis strains and acanthamoeba isolated in the common area of the Gorno-Altai high-mountain plague focus were used for the study. The systematic affiliation of protozoa was determined through analyzing the 18S rRNA gene fragment sequencing data, followed by alignment with amoeba sequences from the NCBI GenBank database. A fluorescent Y. pestis strain was obtained by electroporation using the pTurboGFP-B plasmid. Co-cultivation was carried out in saline buffer in the absence of nutrients for the cells of plague pathogen. The influence of co-culturing with protozoa on Y. pestis properties was determined using microbiological, biological, and molecular-genetic methods. Results and discussion. The cell viability preservation for 22 months of the experiment in Y. pestis strain belonging to the main subspecies of the antique biovar, the 4.ANT phylogenetic line in co-culture with amoeba cells in the absence of additional nutrients has been established. Co-cultivation with amoebae did not lead to a change in the cultural, morphological, genetic and virulent properties of the plague pathogen strain. The data obtained confirm the possibility of using Acanthamoeba castellanii by the plague microbe to persist in soil biocenoses and open up the prospect of studying the mechanisms of plague pathogen surviving during extended inter-epizootic periods.

Publisher

Russian Research Anti-Plague Institute Microbe

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3