Using an artificial intelligence algorithm to assess the bone mineral density of the vertebral bodies based on computed tomography data

Author:

Artyukova Z. R.1ORCID,Kudryavtsev N. D.1ORCID,Petraikin A. V.1ORCID,Abuladze L. R.1ORCID,Smorchkova A. K.1ORCID,Akhmad E. S.1ORCID,Semenov D. S.1ORCID,Belyaev M. G.2ORCID,Belaya Zh. E.3ORCID,Vladzimirskyy A. V.4ORCID,Vasiliev Yu. A.1ORCID

Affiliation:

1. Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department

2. IRA Labs, Inc.

3. The National Medical Research Centre for Endocrinology

4. Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Abstract

Goal: To develop a method for automated assessment of the volumetric bone mineral density (BMD) of the vertebral bodies using an artificial intelligence (AI) algorithm and a phantom modeling method.Materials and Methods: Evaluation of the effectiveness of the AI algorithm designed to assess BMD of the vertebral bodies based on chest CT data. The test data set contains 100 patients aged over 50 y.o.; the ratio between the subjects with/without compression fractures (Сfr) is 48/52. The X-ray density (XRD) of vertebral bodies at T11-L3 was measured by experts and the AI algorithm for 83 patients (205 vertebrae). We used a recently developed QCT PK (Quantitative Computed Tomography Phantom Kalium) method to convert XRD into BMD followed by building calibration lines for seven 64-slice CT scanners. Images were taken from 1853 patients and then processed by the AI algorithm after the calibration. The male to female ratio was 718/1135.Results: The experts and the AI algorithm reached a strong agreement when comparing the measurements of the XRD. The coefficient of determination was R2=0.945 for individual vertebrae (T11-L3) and 0.943 for patients (p=0.000). Once the subjects from the test sample had been separated into groups with/without Сfr, the XRD data yielded similar ROC AUC values for both the experts – 0.880, and the AI algorithm – 0.875. When calibrating CT scanners using a phantom containing BMD samples made of potassium hydrogen phosphate, the following averaged dependence formula BMD =0.77*HU-1.343 was obtained. Taking into account the American College Radiology criteria for osteoporosis, the cut-off value of BMD<80 mg/ml was 105.6HU; for osteopenia BMD<120 mg/ml was 157.6HU. During the opportunistic assessment of BMD in patients aged above 50 years using the AI algorithm, osteoporosis was detected in 31.72% of female and 18.66% of male subjects.Conclusions: This paper demonstrates good comparability for the measurements of the vertebral bodies’ XRD performed by the AI morphometric algorithm and the experts. We presented a method and demonstrated great effectiveness of opportunistic assessment of vertebral bodies’ BMD based on computed tomography data using the AI algorithm and the phantom modeling.

Publisher

Vidar, Ltd.

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3