Tryptophan fluorescence quenching in β-lactam-interacting proteins is modulated by the structure of intermediates and final products of the acylation reaction

Author:

Triboulet Sébastien,Edoo Zainab,Compain Fabrice,Ourghanlian Clément,Dupuis Adrian,Dubée Vincent,Sutterlin Laetitia,Atze Heiner,Ethève-Quelquejeu Mélanie,Hugonnet Jean-EmmanuelORCID,Arthur MichelORCID

Abstract

In most bacteria, β-lactam antibiotics inhibit the last cross-linking step of peptidoglycan synthesis by acylation of the active-site Ser of D,D-transpeptidases belonging to the penicillin-binding protein (PBP) family. In mycobacteria, cross-linking is mainly ensured by L,D-transpeptidases (LDTs), which are promising targets for the development of β-lactam-based therapies for multidrug-resistant tuberculosis. For this purpose, fluorescence spectroscopy is used to investigate the efficacy of LDT inactivation by β-lactams but the basis for fluorescence quenching during enzyme acylation remains unknown. In contrast to what has been reported for PBPs, we show here using a model L,D-transpeptidase (Ldtfm) that fluorescence quenching of Trp residues does not depend upon direct hydrophobic interaction between Trp residues and β-lactams. Rather, Trp fluorescence was quenched by the drug covalently bound to the active-site Cys residue of Ldtfm. Fluorescence quenching was not quantitatively determined by the size of the drug and was not specific of the thioester link connecting the β-lactam carbonyl to the catalytic Cys as quenching was also observed for acylation of the active-site Ser of β-lactamase BlaC from M. tuberculosis. Fluorescence quenching was extensive for reaction intermediates containing an amine anion and for acylenzymes containing an imine stabilized by mesomeric effect, but not for acylenzymes containing a protonated β-lactam nitrogen. Together, these results indicate that the extent of fluorescence quenching is determined by the status of the β-lactam nitrogen. Thus, fluorescence kinetics can provide information not only on the efficacy of enzyme inactivation but also on the structure of the covalent adducts responsible for enzyme inactivation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3