Graphical Representation of Landscape Heterogeneity Identification through Unsupervised Acoustic Analysis

Author:

Guerrero Maria J.ORCID,Sánchez-Giraldo Camilo,Uribe Cesar A.,Martínez Victor,Isaza Claudia

Abstract

AbstractChanges in land use and global warming pose an increasing threat to global biodiversity and ecosystems, calling for the urgent development of effective conservation strategies. Recognizing landscape heterogeneity, which refers to the variation in natural features within an area, is crucial for these strategies. While remote sensing images quantify landscape heterogeneity, they might fail to detect ecological patterns in moderately disturbed areas, particularly at minor spatial scales. This is partly because satellite imagery may not effectively capture undergrowth conditions due to its resolution constraints. In contrast, soundscape analysis, which studies environmental acoustic signals, emerges as a novel tool for understanding ecological patterns, providing reliable information on habitat conditions and landscape heterogeneity in complex environments across diverse scales and serving as a complement to remote sensing methods.We propose an unsupervised approach using passive acoustic monitoring data and network inference methods to analyze acoustic heterogeneity patterns based on biophony composition and richness. This method uses sonotypes, unique acoustic entities characterized by their specific time-frequency spaces, to establish the acoustic structure of a site through sonotype occurrences, focusing on general biophony rather than specific species and providing information on the acoustic footprint of a site. From a sonotype composition matrix, we use the Graphical Lasso method, a sparse Gaussian graphical model, to identify acoustic similarities across sites, map ecological complexity relationships through the nodes (sites) and edges (similarities) and transform acoustic data into a graphical representation of ecological interactions and landscape acoustic diversity.We implemented the proposed method across 17 sites within an oil palm plantation in Santander, Colombia. The resulting inferred graphs visualize the acoustic similarities among sites, reflecting the biophony achieved by characterizing the landscape through its acoustic structures. Correlating our findings with ecological metrics like the Bray-Curtis dissimilarity index and satellite imagery indices reveals significant insights into landscape heterogeneity.This unsupervised approach offers a new perspective on understanding ecological and biological interactions and advances soundscape analysis. The soundscape decomposition into sonotypes underscores the method’s advantage, offering the possibility to associate sonotypes with species and identify their contribution to the similarity proposed by the graph.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3