Auditory discrimination of natural soundscapes

Author:

Apoux Frédéric1ORCID,Miller-Viacava Nicole1,Ferrière Régis2ORCID,Dai Huanping3,Krause Bernie4,Sueur Jérôme5,Lorenzi Christian1ORCID

Affiliation:

1. Laboratoire des Systèmes Perceptifs, UMR CNRS 8248, Département d'Etudes Cognitives, Ecole normale supérieure, Université Paris Sciences et Lettres (PSL) 1 , Paris, 75005, France

2. International Research Laboratory for Interdisciplinary Global Environmental Studies (iGLOBES), CNRS, ENS-PSL University, University of Arizona 2 , Tucson, Arizona 85721, USA

3. Speech Language and Hearing Sciences, University of Arizona 3 , Tucson, Arizona 85721-0071, USA

4. Wild Sanctuary 4 , 1102 Princeton Drive, Sonoma, California 95476, USA

5. Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles 5 , 57 rue Cuvier, 75005 Paris, France

Abstract

A previous modelling study reported that spectro-temporal cues perceptually relevant to humans provide enough information to accurately classify “natural soundscapes” recorded in four distinct temperate habitats of a biosphere reserve [Thoret, Varnet, Boubenec, Ferriere, Le Tourneau, Krause, and Lorenzi (2020). J. Acoust. Soc. Am. 147, 3260]. The goal of the present study was to assess this prediction for humans using 2 s samples taken from the same soundscape recordings. Thirty-one listeners were asked to discriminate these recordings based on differences in habitat, season, or period of the day using an oddity task. Listeners' performance was well above chance, demonstrating effective processing of these differences and suggesting a general high sensitivity for natural soundscape discrimination. This performance did not improve with training up to 10 h. Additional results obtained for habitat discrimination indicate that temporal cues play only a minor role; instead, listeners appear to base their decisions primarily on gross spectral cues related to biological sound sources and habitat acoustics. Convolutional neural networks were trained to perform a similar task using spectro-temporal cues extracted by an auditory model as input. The results are consistent with the idea that humans exclude the available temporal information when discriminating short samples of habitats, implying a form of a sub-optimality.

Funder

Agence Nationale de la Recherche

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3