Inflammatory reprogramming of the tumor microenvironment by infiltrating clonal hematopoiesis is associated with adverse outcomes in solid cancer

Author:

Buttigieg Marco M.ORCID,Vlasschaert CaitlynORCID,Bick Alexander G.ORCID,Vanner Robert J.ORCID,Rauh Michael J.ORCID

Abstract

AbstractClonal hematopoiesis (CH) – the expansion of somatically-mutated hematopoietic cells in blood – is common in solid cancers. CH is associated with systemic inflammation that may lead to cancer, but its impact on tumor biology is underexplored. Here, we report the effects of CH on the tumor microenvironment (TME) using 1,550 treatment-naïve patient samples from the CPTAC cohort. CH was present in 18.3% of patients, with one-third of CH mutations also detectable in tumor-derived DNA from the same individual (CH-Tum), reflecting CH-mutant leukocyte infiltration. The presence of CH-Tum was associated with worse survival across cancers, particularly for glioblastoma.Transcriptomics and proteomics revealed that CH drives inflammation in the TME in a cancer- and CH driver-specific manner, and may improve immunotherapy responses. In glioblastoma, CH associated with pronounced macrophage infiltration, inflammation, and an aggressive, mesenchymal phenotype. Our findings demonstrate that CH shapes the TME, with potential applications as a biomarker in precision oncology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3