Abstract
AbstractMycobacterium abscessusis a pulmonary pathogen that exhibits intrinsic resistance to antibiotics, but the factors driving this resistance are incompletely understood. Insufficient intracellular drug accumulation could explain broad-spectrum resistance, but whether antibiotics fail to accumulate inM. abscessusand the mechanisms required for drug exclusion remain poorly understood. We measured antibiotic accumulation inM. abscessususing mass spectrometry and found a wide range of drug accumulation across clinically relevant antibiotics. Of these compounds, linezolid accumulates the least, suggesting that inadequate uptake impacts its efficacy. We utilized transposon mutagenesis screening to identify genes that cause linezolid resistance and found multiple transporters that promote membrane permeability or efflux, including an uncharacterized,M. abscessus-specific protein that effluxes linezolid and several chemically related antibiotics. This demonstrates that membrane permeability and drug efflux are critical mechanisms of antibiotic resistance inM. abscessusand suggests that targeting membrane transporters could potentiate the efficacy of certain antibiotics.
Publisher
Cold Spring Harbor Laboratory