Abstract
AbstractThe stochasticity of gene expression is manifested in the fluctuations of mRNA and protein copy numbers within a cell lineage over time. While data of this type can be obtained for many generations, most mathematical models are unsuitable to interpret such data since they assume non-growing cells. Here we develop a theoretical approach that quantitatively links the frequency content of lineage data to subcellular dynamics. We elucidate how the position, height, and width of the peaks in the power spectrum provide a distinctive fingerprint that encodes a wealth of information about mechanisms controlling transcription, translation, replication, degradation, bursting, promoter switching, cell cycle duration, cell division, and gene dosage compensation. Predictions are confirmed by analysis of single-cell Escherichia coli data obtained using fluorescence microscopy. Furthermore, by matching the experimental and theoretical power spectra, we infer the temperature-dependent gene expression parameters, without the need of measurements relating fluorescence intensities to molecule numbers.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献