Population dynamics of GC-changing mutations in humans and great apes

Author:

Bergman JurajORCID,Schierup Mikkel HeideORCID

Abstract

AbstractBackgroundThe nucleotide composition of the genome is a balance between origin and fixation rates of different mutations. For example, it is well-known that transitions occur more frequently than transversions, particularly at CpG sites. Differences in fixation rates of mutation types are less explored. Specifically, recombination-associated GC-biased gene conversion (gBGC) may differentially impact GC-changing mutations, due to differences in their genomic distributions and efficiency of mismatch repair mechanisms. Given that recombination evolves rapidly across species, we explore gBGC of different mutation types across human populations and among great ape species.ResultsWe report a stronger correlation between GC frequency and recombination for transitions than for transversions. Notably, CpG transitions are most strongly affected by gBGC. We show that the strength of gBGC differs for transitions and transversions but that its overall strength is positively correlated with effective population sizes of human populations and great ape species, with some notable exceptions, such as a stronger effect of gBGC on non-CpG transitions in populations of European descent. We study the dependence of gBGC dynamics on flanking nucleotides and show that some mutation types evolve in opposition to the gBGC expectation, likely due to hypermutability of specific nucleotide contexts.ConclusionsDifferences in GC-biased gene conversion are evident between different mutation types, and dependent on sex-specific recombination, population size and flanking nucleotide context. Our results therefore highlight the importance of different gBGC dynamics experienced by GC-changing mutations and their impact on nucleotide composition evolution.

Publisher

Cold Spring Harbor Laboratory

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3