Elucidating Human Milk Oligosaccharide biosynthetic genes through network-based multiomics integration

Author:

Kellman Benjamin P.ORCID,Richelle AnneORCID,Yang Jeong-Yeh,Chapla Digantkumar,Chiang Austin W. T.,Najera Julia,Bao BokanORCID,Koga NataliaORCID,Mohammad Mahmoud A.ORCID,Bruntse Anders Bech,Haymond Morey W.ORCID,Moremen Kelley W.,Bode Lars,Lewis Nathan E.ORCID

Abstract

AbstractHuman Milk Oligosaccharides (HMOs) are abundant carbohydrates fundamental to infant health and development. Although these oligosaccharides were discovered more than half a century ago, their biosynthesis in the mammary gland remains largely uncharacterized. Here, we used a systems biology framework that integrated glycan and RNA expression data to construct an HMO biosynthetic network and predict glycosyltransferases involved. To accomplish this, we constructed models describing the most likely pathways for the synthesis of the oligosaccharides accounting for >95% of the HMO content in human milk. Through our models, we propose candidate genes for elongation, branching, fucosylation, and sialylation of HMOs. We further explored selected enzyme activities through kinetic assay and their co-regulation through transcription factor analysis. These results provide the molecular basis of HMO biosynthesis necessary to guide progress in HMO research and application with the ultimate goal of understanding and improving infant health and development.Significance statementWith the HMO biosynthesis network resolved, we can begin to connect genotypes with milk types and thereby connect clinical infant, child and even adult outcomes to specific HMOs and HMO modifications. Knowledge of these pathways can simplify the work of synthetic reproduction of these HMOs providing a roadmap for improving infant, child, and overall human health with the specific application of a newly limitless source of nutraceuticals for infants and people of all ages.

Publisher

Cold Spring Harbor Laboratory

Reference147 articles.

1. Delayed Breastfeeding Initiation Increases Risk of Neonatal Mortality

2. Human milk oligosaccharides: Every baby needs a sugar mama

3. Human milk oligosaccharides and their potential benefits for the breast-fed neonate;Minerva Pediatr,2012

4. Coppa, G. V. et al. Changes in Carbohydrate Composition in Human Milk Over 4 Months of Lactation. Pediatrics 91, (1993).

5. Nutrient Composition of Human Milk

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3