Abstract
AbstractNeisseria gonorrhoeae rely on Type IV pili (T4p) to promote colonization of their human host and to cause the sexually transmitted infection, gonorrhea. This organelle cycles through a process of extension and retraction back into the bacterial cell. Through a genetic screen, we identified the NGO0783 locus of N. gonorrhoeae strain FA1090 as containing a gene encoding a protein required to stabilize the Type IV pilus in its extended, non-retracted conformation. We have named the gene tfpC and the protein TfpC. Deletion of tfpC produces a nonpiliated colony morphology and immuno-transmission electron microscopy confirms that the pili are lost in the ΔtfpC mutant, although there is some pilin detected near the bacterial cell surface. A copy of the tfpC gene expressed from a lac promoter restores pilus expression and related phenotypes. A ΔtfpC mutant shows reduced levels of pilin protein, but complementation with a tfpC gene restored pilin to normal levels. Bioinformatic searches show there are orthologues in numerous bacteria species but not all Type IV pilin expressing bacteria contain orthologous genes. Co-evolution and NMR analysis indicates that TfpC contains an N-terminal transmembrane helix, a substantial extended/unstructured region and a highly charge C-terminal coiled-coil domain.ImportanceMost bacterial species express one or more extracellular organelles called pili/fimbriae that are required for many properties of each bacterial cell. The Neisseria gonorrhoeae Type IV pilus is a major virulence and colonization factor for the sexually transmitted infection, gonorrhea. We have discovered a new protein of Neisseria gonorrhoeae called TfpC that is required to maintain the Type IV pili on the bacterial cell surface. There are similar proteins found in the other members of the Neisseria genus and many other bacterial species important for human health.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献