Discovery of a new Neisseria gonorrhoeae Type IV pilus assembly factor, TfpC

Author:

Hu Linda I.,Yin Shaohui,Ozer Egon A.ORCID,Sewell Lee,Rehman Saima,Garnett James AORCID,Seifert H StevenORCID

Abstract

AbstractNeisseria gonorrhoeae rely on Type IV pili (T4p) to promote colonization of their human host and to cause the sexually transmitted infection, gonorrhea. This organelle cycles through a process of extension and retraction back into the bacterial cell. Through a genetic screen, we identified the NGO0783 locus of N. gonorrhoeae strain FA1090 as containing a gene encoding a protein required to stabilize the Type IV pilus in its extended, non-retracted conformation. We have named the gene tfpC and the protein TfpC. Deletion of tfpC produces a nonpiliated colony morphology and immuno-transmission electron microscopy confirms that the pili are lost in the ΔtfpC mutant, although there is some pilin detected near the bacterial cell surface. A copy of the tfpC gene expressed from a lac promoter restores pilus expression and related phenotypes. A ΔtfpC mutant shows reduced levels of pilin protein, but complementation with a tfpC gene restored pilin to normal levels. Bioinformatic searches show there are orthologues in numerous bacteria species but not all Type IV pilin expressing bacteria contain orthologous genes. Co-evolution and NMR analysis indicates that TfpC contains an N-terminal transmembrane helix, a substantial extended/unstructured region and a highly charge C-terminal coiled-coil domain.ImportanceMost bacterial species express one or more extracellular organelles called pili/fimbriae that are required for many properties of each bacterial cell. The Neisseria gonorrhoeae Type IV pilus is a major virulence and colonization factor for the sexually transmitted infection, gonorrhea. We have discovered a new protein of Neisseria gonorrhoeae called TfpC that is required to maintain the Type IV pili on the bacterial cell surface. There are similar proteins found in the other members of the Neisseria genus and many other bacterial species important for human health.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of type IV pilin biosynthesis genes in biofilm formation of Aeromonas hydrophila;Asia Pacific Journal of Molecular Biology and Biotechnology;2023-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3