Abstract
AbstractNeonatal seizures pose a clinical challenge for their early detection, acute management, and mitigation of long-term comorbidities. A major cause of neonatal seizures is hypoxic-ischemic encephalopathy that results in seizures that are frequently refractory to the first-line anti-seizure medication phenobarbital (PB). One proposed mechanism for PB-inefficacy during neonatal seizures is the reduced expression and function of the neuron-specific K+/Cl− cotransporter 2 (KCC2), the main neuronal Cl− extruder that maintains chloride homeostasis and influences the efficacy of GABAergic inhibition. To determine if PB-refractoriness after ischemic neonatal seizures is dependent upon KCC2 hypofunction and can be rescued by KCC2 functional enhancement, we investigated the recently developed KCC2 functional enhancer CLP290 in a CD-1 mouse model of refractory ischemic neonatal seizures quantified with vEEG. We report that acute CLP290 intervention can rescue PB-resistance, KCC2 expression, and the development of epileptogenesis after ischemic neonatal seizures. KCC2 phosphorylation sites have a strong influence over KCC2 activity and seizure susceptibility in adult experimental epilepsy models. Therefore, we investigated seizure susceptibility in two different knock-in mice in which either phosphorylation of S940 or T906/T1007 was prevented. We report that KCC2 phosphorylation regulates both neonatal seizure susceptibility and CLP290-mediated KCC2 functional enhancement. Our results validate KCC2 as a clinically relevant target for refractory neonatal seizures and provide insights for future KCC2 drug development.
Publisher
Cold Spring Harbor Laboratory
Reference71 articles.
1. J. Volpe , T. Inder , B. Darras , L. de Vries , A. du Plessis , J. Neill , J. Perlman , Volpe’s Neurology of the Newborn - 6th Edition (Elsevier, ed. 6th, 2017).
2. Neonatal seizures
3. Response to antiseizure medications in neonates with acute symptomatic seizures;Epilepsia,2019
4. Monitoring neonatal seizures;Semin. Neonatal Med,2013
5. Cation-chloride cotransporters in neuronal development, plasticity and disease
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献