CLP290 promotes the sedative effects of midazolam in neonatal rats in a KCC2-dependent manner: A laboratory study in rats

Author:

Doi Akiko,Miyazaki TomoyukiORCID,Mihara TakahiroORCID,Ikeda Maiko,Niikura Ryo,Andoh Tomio,Goto Takahisa

Abstract

Immature neurons dominantly express the Na+-K+-2Cl- cotransporter isoform 1 (NKCC1) rather than the K+-Cl- cotransporter isoform 2 (KCC2). The intracellular chloride ion concentration ([Cl-]i) is higher in immature neurons than in mature neurons; therefore, γ-aminobutyric acid type A (GABAA) receptor activation in immature neurons does not cause chloride ion influx and subsequent hyperpolarization. In our previous work, we found that midazolam, benzodiazepine receptor agonist, causes less sedation in neonatal rats compared to adult rats and that NKCC1 blockade by bumetanide enhances the midazolam-induced sedation in neonatal, but not in adult, rats. These results suggest that GABA receptor activation requires the predominance of KCC2 over NKCC1 to exert sedative effects. In this study, we focused on CLP290, a novel KCC2-selective activator, and found that midazolam administration at 20 mg/kg after oral CLP290 intake significantly prolonged the righting reflex latency even in neonatal rats at postnatal day 7. By contrast, CLP290 alone did not exert sedative effects. Immunohistochemistry showed that midazolam combined with CLP290 decreased the number of phosphorylated cAMP response element-binding protein-positive cells in the cerebral cortex, suggesting that CLP290 reverted the inhibitory effect of midazolam. Moreover, the sedative effect of combined CLP290 and midazolam treatment was inhibited by the administration of the KCC2-selective inhibitor VU0463271, suggesting indirectly that the sedation-promoting effect of CLP290 was mediated by KCC2 activation. To our knowledge, this study is the first report showing the sedation-promoting effect of CLP290 in neonates and providing behavioral and histological evidence that CLP290 reverted the sedative effect of GABAergic drugs through the activation of KCC2. Our data suggest that the clinical application of CLP290 may provide a breakthrough in terms of midazolam-resistant sedation.

Funder

japan society for the promotion of science

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3