Whole Genome Variation of Transposable Element Insertions in a Maize Diversity Panel

Author:

Qiu YinjieORCID,O’Connor Christine H.,Coletta Rafael Della,Renk Jonathan S.,Monnahan Patrick J.,Noshay Jaclyn M.,Liang Zhikai,Gilbert Amanda,Anderson Sarah N.ORCID,McGaugh Suzanne E.,Springer Nathan M.,Hirsch Candice N.

Abstract

ABSTRACTIntact transposable elements (TEs) account for 65% of the maize genome and can impact gene function and regulation. Although TEs comprise the majority of the maize genome and affect important phenotypes, genome wide patterns of TE polymorphisms in maize have only been studied in a handful of maize genotypes, due to the challenging nature of assessing highly repetitive sequences. We implemented a method to use short read sequencing data from 509 diverse inbred lines to classify the presence/absence of 445,418 non-redundant TEs that were previously annotated in four genome assemblies including B73, Mo17, PH207, and W22. Different orders of TEs (i.e. LTRs, Helitrons, TIRs) had different frequency distributions within the population. LTRs with lower LTR similarity were generally more frequent in the population than LTRs with higher LTR similarity, though high frequency insertions with very high LTR similarity were observed. LTR similarity and frequency estimates of nested elements and the outer elements in which they insert revealed that most nesting events occurred very near the timing of the outer element insertion. TEs within genes were at higher frequency than those that were outside of genes and this is particularly true for those not inserted into introns. Many TE insertional polymorphisms observed in this population were tagged by SNP markers. However, there were also 19.9% of the TE polymorphisms that were not well tagged by SNPs (R2 < 0.5) that potentially represent information that has not been well captured in previous SNP based marker-trait association studies. This study provides a population scale genome-wide assessment of TE variation in maize, and provides valuable insight on variation in TEs in maize and factors that contribute to this variation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3