Medium-chain acyl-CoA dehydrogenase, a gatekeeper of mitochondrial function in glioblastoma multiforme

Author:

Puca Francesca,Yu Fei,Bertolacci Caterina,Pettazzoni Piergiorgio,Carugo Alessandro,Huang-Hobbs Emmet,Liu Jintan,Zanca Ciro,Carbone Federica,Del Poggetto Edoardo,Gumin Joy,Dasgupta Pushan,Seth Sahil,Lang Frederick F.,Sulman ErikORCID,Lorenzi Philip L.,Tan Lin,Shan Mengrou,Tolstyka Zachary P.,Kachman Maureen,Zhang Li,Deem Angela K.,Genovese Giannicola,Scaglioni Pier Paolo,Lyssiotis Costas A.ORCID,Viale Andrea,Draetta Giulio F.ORCID

Abstract

SUMMARYGlioblastoma (GBM) is among the deadliest of human cancers. Despite extensive efforts, it has proven to be highly resistant to chemo- and immune-based therapeutic strategies, and little headway has been made with targeted inhibitors. Like many cancers, metabolism is dysregulated in GBM. Thus, to identify new vulnerabilities and drug targets in GBM, we conducted genetic screens using pooled RNAi libraries targeting metabolic enzymes. We screened multiple glioma stem cell-derived (GSC) xenograft models, which revealed that several enzymes involved in the mitochondrial metabolism of fatty acids were required for tumor cell proliferation. From among these, we focused on medium-chain acyl-CoA dehydrogenase (MCAD), which oxidizes medium-chain fatty acids, due to its consistently high score across all of our screens, as well as its high expression level in multiple GSC models and its upregulation in GBM compared to normal brain.In this manuscript, we describe the dependence of GBM on sustained fatty acid metabolism to actively catabolize lipid species that would otherwise damage the mitochondrial structure. The uptake of mediumchain fatty acids lacks negative feedback regulation; therefore, in the absence of MCAD, medium-chain fatty acids accumulate to toxic levels, inducing reactive oxygen species (ROS), mitochondrial damage and failure, and apoptosis. Taken together, our findings uncover a previously unappreciated protective role exerted by MCAD in GBM cells, making it a unique and therapeutically exploitable vulnerability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3