Unsupervised clustering analysis of SARS-Cov-2 population structure reveals six major subtypes at early stage across the world

Author:

Li YaweiORCID,Liu Qingyun,Zeng Zexian,Luo Yuan

Abstract

AbstractIdentifying the population structure of the newly emerged coronavirus SARS-CoV-2 has significant potential to inform public health management and diagnosis. As SARS-CoV-2 sequencing data accrued, grouping them into clusters is important for organizing the landscape of the population structure of the virus. Due to the limited prior information on the newly emerged coronavirus, we utilized four different clustering algorithms to group 16,873 SARS-CoV-2 strains, which automatically enables the identification of spatial structure for SARS-CoV-2. A total of six distinct genomic clusters were identified using mutation profiles as input features. Comparison of the clustering results reveals that the four algorithms produced highly consistent results, but the state-of-the-art unsupervised deep learning clustering algorithm performed best and produced the smallest intra-cluster pairwise genetic distances. The varied proportions of the six clusters within different continents revealed specific geographical distributions. In particular, our analysis found that Oceania was the only continent on which the strains were dispersively distributed into six clusters. In summary, this study provides a concrete framework for the use of clustering methods to study the global population structure of SARS-CoV-2. In addition, clustering methods can be used for future studies of variant population structures in specific regions of these fast-growing viruses.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised clustering of SARS-CoV-2 using deep convolutional autoencoder;Journal of Engineering and Applied Science;2022-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3