Author:
Mountjoy Edward,Schmidt Ellen M.,Carmona Miguel,Peat Gareth,Miranda Alfredo,Fumis Luca,Hayhurst James,Buniello Annalisa,Schwartzentruber Jeremy,Karim Mohd Anisul,Wright Daniel,Hercules Andrew,Papa Eliseo,Fauman Eric,Barrett Jeffrey C.,Todd John A.,Ochoa David,Dunham Ian,Ghoussaini Maya
Abstract
AbstractGenome-wide association studies (GWAS) have identified many variants robustly associated with complex traits but identifying the gene(s) mediating such associations is a major challenge. Here we present an open resource that provides systematic fine-mapping and protein-coding gene prioritization across 133,441 published human GWAS loci. We integrate diverse data sources, including genetics (from GWAS Catalog and UK Biobank) as well as transcriptomic, proteomic and epigenomic data across many tissues and cell types. We also provide systematic disease-disease and disease-molecular trait colocalization results across 92 cell types and tissues and identify 729 loci fine-mapped to a single coding causal variant and colocalized with a single gene. We trained a machine learning model using the fine mapped genetics and functional genomics data using 445 gold standard curated GWAS loci to distinguish causal genes from background genes at the same loci, outperforming a naive distance based model. Genes prioritized by our model are enriched for known approved drug targets (OR = 8.1, 95% CI: [5.7, 11.5]). These results will be regularly updated and are publicly available through a web portal, Open Targets Genetics (OTG, http://genetics.opentargets.org), enabling users to easily prioritize genes at disease-associated loci and assess their potential as drug targets.
Publisher
Cold Spring Harbor Laboratory