Author:
Svensson Jonas,Schain Martin,Knudsen Gitte M.,Ogden Todd,Plavén-Sigray Pontus
Abstract
Clinical positron emission tomography (PET) research is costly and entails exposing participants to radioactivity. Researchers should therefore aim to include just the number of subjects needed to fulfill the purpose of the study. In this tutorial we show how to apply sequential Bayes Factor testing in order to stop the recruitment of subjects in a clinical PET study as soon as enough data have been collected to make a conclusion. By using simulations, we demonstrate that it is possible to stop a study early, while keeping the number of erroneous conclusions low. We then apply sequential Bayes Factor testing to a real PET data set and show that it is possible to obtain support in favor of an effect while simultaneously reducing the sample size with 30%. Using this procedure allows researchers to reduce expense and radioactivity exposure for a range of effect sizes relevant for PET research.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献