Evidence for the null hypothesis in functional magnetic resonance imaging using group-level Bayesian inference

Author:

Masharipov RuslanORCID,Nikolaev YaroslavORCID,Korotkov AlexanderORCID,Didur Michael,Cherednichenko Denis,Kireev MaximORCID

Abstract

AbstractClassical null hypothesis significance testing is limited to the rejection of the point-null hypothesis; it does not allow the interpretation of non-significant results. Moreover, studies with a sufficiently large sample size will find statistically significant results even when the effect is negligible and may be considered practically equivalent to the ‘null effect’. This leads to a publication bias against the null hypothesis. There are two main approaches to assess ‘null effects’: shifting from the point-null to the interval-null hypothesis and considering the practical significance in the frequentist approach; using the Bayesian parameter inference based on posterior probabilities, or the Bayesian model inference based on Bayes factors. Herein, we discuss these statistical methods with particular focus on the application of the Bayesian parameter inference, as it is conceptually connected to both frequentist and Bayesian model inferences. Although Bayesian methods have been theoretically elaborated and implemented in commonly used neuroimaging software, they are not widely used for ‘null effect’ assessment. To demonstrate the advantages of using the Bayesian parameter inference, we compared it with classical null hypothesis significance testing for fMRI data group analysis. We also consider the problem of choosing a threshold for a practically significant effect and discuss possible applications of Bayesian parameter inference in fMRI studies. We argue that Bayesian inference, which directly provides evidence for both the null and alternative hypotheses, may be more intuitive and convenient for practical use than frequentist inference, which only provides evidence against the null hypothesis. Moreover, it may indicate that the obtained data are not sufficient to make a confident inference. Because interim analysis is easy to perform using Bayesian inference, one can evaluate the data as the sample size increases and decide to terminate the experiment if the obtained data are sufficient to make a confident inference. To facilitate the application of the Bayesian parameter inference to ‘null effect’ assessment, scripts with a simple GUI were developed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3