Author:
Marín-Blasco Ignacio Javier,José Rangel Miguel,Baldo Marcus Vinicius C.,Motta Simone Cristina,Canteras Newton Sabino
Abstract
AbstractEvasion from imminent threats and prey attack are opposite behavioral choices critical to survival. Curiously, the lateral periaqueductal gray (LPAG) has been implicated in driving both responses. The LPAG responds to social threats and prey hunting while also drives predatory attacks and active defense. However, the LPAG neural mechanisms mediating these behaviors remain poorly defined. Here, we investigate how the LPAG mediates the choices of predatory hunting and evasion from a social threat. Pharmacogenetic inhibition in Fos DD-Cre mice of neurons responsive specifically to insect predation (IP) or social defeat (SD) revealed that distinct neuronal populations in the LPAG drive the prey hunting and evasion from social threats. We show that the LPAG provides massive glutamatergic projection to the lateral hypothalamic area (LHA). Optogenetic inhibition of the LPAG-LHA pathway impaired IP but did not alter escape/attack ratio during SD. We also found that pharmacogenetic inhibition of LHAGABA neurons impaired IP, but did not change evasion during SD. The results suggest that the LPAG control over evasion to a social attack may be regarded as a stereotyped response depending probably on glutamatergic descending projections. On the other hand, the LPAG control over predatory behavior involves an ascending glutamatergic pathway to the LHA that likely influences LHAGABA neurons driving predatory attack and prey consumption. The LPAG-LHA path supposedly provides an emotional drive for prey hunting and, of relevance, may conceivably have more widespread control on the motivational drive to seek other appetitive rewards.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献